Modular Integer Arithmetic

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 1 & 2 : Integer and Modular Arithmetic

Efficient recipes for performing integer arithmetic are indispensable as they are widely used in several algorithms in diverse areas such as cryptology, computer graphics and other engineering areas. Hence our first object of study would be the most basic integer operations namely addition, subtraction, multiplication and division. We will start off with algorithms that are typically referred t...

متن کامل

Modular Integer Arithmetic 1 Christoph Schwarzweller Institute of Computer

In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for...

متن کامل

Energy-Efficient Software Implementation of Long Integer Modular Arithmetic

This paper investigates performance and energy characteristics of software algorithms for long integer arithmetic. We analyze and compare the number of RISC-like processor instructions (e.g. singleprecision multiplication, addition, load, and store instructions) required for the execution of different algorithms such as Schoolbook multiplication, Karatsuba and Comba multiplication, as well as M...

متن کامل

Modular arithmetic

Since congruence modulo m is an equivalence relation, it partitions the universe of integers into equivalence classes, which we’ll call congruence classes modulo m. Within any one of these classes, all of the members are congruent to all of the other members; but congruence modulo m never holds between members of different equivalence classes. For instance, there are two congruence classes modu...

متن کامل

Widening Integer Arithmetic

Some codes require computations to use fewer bits of precision than are normal for the target machine. For example, Java requires 32-bit arithmetic even on a 64-bit target. To run narrow codes on a wide target machine, we present a widening transformation. Almost every narrow operation can be widened by signor zero-extending the operands and using a target-machine instruction at its natural wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2008

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-008-0029-8